Semi-automatic Detection of

TECHNISCHE UNIVERSITÄT DARMSTADT

Cross-lingual Marketing Blunders

based on Pragmatic Label Propagation in Wiktionary

UBIQUITOUS KNOWLEDGE PROCESSING

Christian M. Meyer, Judith Eckle-Kohler, and Iryna Gurevych

Ubiquitous Knowledge Processing (UKP) Lab and Research Training Group AIPHES, Technische Universität Darmstadt, Germany

immarv

Marketing blunders occur if a trade name resembles an inappropriate or negatively connotated word in a target language.

In this work, we introduce

- a formal definition for this new NLP task,
- a semi-automatic method based on the propagation of pragmatic labels from Wiktionary across sense-disambiguated translations in over 1.000 languages,
- an online demo of our tool: http://uby.ukp.informatik.tu-darmstadt.de/blunder/
- two evaluation experiments and a new dataset of previously occurred marketing blunders,
- a research roadmap to initiate future work and a community around this task.

Formal Task Definition

Given: product, brand, or company name T

"Silver Mist"

English: A layer of fine droplets. Describes fabulous, enigmatic, lightweight, mystic things

German: dung or manure; (slang) futile, cheap, broken thing; nonsense; annoying, tedious situation

Motivation

"This is 7"

China: 7, is here

Taiwan: Exactly is 7.

Hong Kong: This, is exactly iPhone 7. Cantonese cat1 (numeral 7) is similar to cat6 (vulgarity for male genitals), also used for smth. ugly or shameful.

- Increasing sales in international markets
- Trade names may have a different meaning in the local language
- Yields offensive, embarrassing, or funny results
- High remedial cost or even withdraw of a product
- Detection difficult without local branches (\rightarrow startups?)
- Absence of resources!
- Absence of tools!

- **Goal:** method \mathcal{M} retrieving a set of clues $C = \mathcal{M}(T)$ to support decision-making
- Clues $(w, l, d) \in C$ provide explanation

• Example: *T* = "Silver Mist"

form w	language <i>l</i>	description d
Silber	German	A shiny gray color
mist	English	A layer of fine droplets
Mist	German	Manure; animal excrement
miist	Seri	Animal of the family Felidae
miste	Danish	To lose something
silver mine	English	A mine for silver ore
L	J	L

object language

meta/description language

- **Primary objective:** high recall "detect as many blunders as possible"
- Secondary objective: high precision "retrieve only relevant clues"

Discussion and Roadmap

Finding good names is a creative process \rightarrow hard to model as pattern recognition task **Clues explain why a name is problematic** \rightarrow SoA classification tasks are often limited

Homograph index: >1.3 M forms, >3 M clues from >1.000 languages

spoken by copywriters

- **B: Propagate pragmatic labels** Propagate labels across translations:
- Sociological labels: argot, army slang, children's language,...
- Register & style labels: colloquial, informal, slang,...
- Evaluative labels: pejorative, rude, derogatory,...

C: Similar form representations

- So far, we use Soundex representations
- Need for pseudo-phonetic representation and transliteration for basically any language

D: Semi-automatic usage

Retrieve pragmatically marked clues for each normalized token (MARKED), then marked clues with a similar form (SOUNDEX), then remaining unmarked entries (LOOKUP)

Evaluation

Experiment 1: Previously occurred blunders

	MARKED	SOUNDEX	LOOKUP	COMBINE
Detected blunders:	18 / 44	18 / 44	28 / 44	34 / 44
intent	0/3	0/3	3/3	3/3
negative	3 / 15	8 / 15	10 / 15	14 / 15
sexual	7 / 14	4 / 14	7 / 14	8 / 14
vulgar	8 / 12	6 / 12	8 / 12	9 / 12
Relevant clues:	105 / 151	85 / 247	341 / 1202	229 / 517
Precision <i>P</i> .	.70	.34	.28	.44
Recall <i>R</i> :	.41	.41	.64	.77
F ₁ score:	.52	.37	.39	.56
F ₂ score:	.45	.39	.51	.67

Experiment 2: Relevant clues in top-tier brands

- \approx 1,000 international brand names from the BrandPitt corpus (Özbal et al., 2012).
- Our tool returns 756 (MARKED), 3,549 (SOUNDEX), and 17,270 clues (LOOKUP).

to indicating if there is a problem

Evaluating a name is highly subjective \rightarrow Semi-automatic solutions assist users

Blunder detection needs all languages \rightarrow challenging for poor-resourced languages \rightarrow separating object and meta language

Future resources for evaluation (cooperation) with marketing research?), as background knowledge (e.g., colloquial language corpora)

Future methods: intelligent segmentation, transliteration, phonetic representation, sentiment analysis tools and resources

Future tasks: clues for acronyms, person names

Relevance annotation for clues: $A_0 = 95\%$, $\kappa = .87$ LOOKUP and COMBINE effectively detect blunders MARKED and COMBINE minimize effort

Initial evaluation dataset: 44 previously occurred marketing blunders based on Ricks (2006) and the Commisceo Global blog. Publicly available!

• **Pixar**: to urinate (Catalan)

• Nero: brainiac (Finnish), 'gangsta' (Colombia)

Aston Martin: martin = buttocks (Fur)

Thanks a Latte: Latte = errected penis (German)

2 raters tag 154 and 192 of the MARKED clues as relevant \rightarrow 70 and 88 names (A₀ = 90 %, κ = .72).

Examples and error analysis

• Get Lost Magazine / Urban Decay: intentional ambiguity \rightarrow leave final decision to humans

- FARTFULL: need for intelligent segmentation
- Vicks: inflected word forms across languages
- **Bardak:** needs transliteration бардак (whorehouse)

This work has been supported by the Volkswagen Foundation as part of the Lichtenberg-Professorship Program under grant No. I/82806, by the German Research Foundation under grant •GU 798/17-1, and by the German Institute for Educational Research (DIPF).

https://www.ukp.tu-darmstadt.de