DKPro Agreement

An Open-Source Java Library for
Measuring Inter-Rater Agreement

TECHNISCHE
UNIVERSITAT
DARMSTADT

§ =, UBIQUITOUS
= KNOWLEDGE
§?“ PROCESSING

Christian M. Meyer, Margot Mieskes, Christian Stab, and Iryna Gurevych
Ubiquitous Knowledge Processing (UKP) Lab, Technische Universitat Darmstadt / German Institute for Educational Research

DKPro Agreement is an open-licensed Java
library for computing inter-rater agreement
using a shared interface and data model.

Highlights:

WebAnn

Support for all commonly used
Inter-rater agreement measures

Calculation of multiple coefficients
using the same data model

Both coding and unitizing setups
are possible

Multiple diagnostic devices and
visual aids for analyzing disagreement

Thoroughly tested on a wide range of
examples from the literature

» over 60 test cases for annotation studies
including citation of original source

Available as open source software under
the Apache License 2.0 (ASL)

» Extensions and comments welcome!

Integrates well with existing
Java-based NLP frameworks

Ready-to-use via Maven Central — simply
specify the dependency:

» groupld: de.tudarmstadt.ukp.dkpro.statistics
» artifactld: dkpro-statistics-agreement

» version: 2.0.0

Part of DKPro Statistics collection

Motivation

Reliability is a necessary precondition of
high quality datasets

Long tradition of assessing inter-rater
agreement in psychology, medicine,
content analysis

In NLP/CL often ignored or limited
Researchers rely on

» manual calculations
» hasty implementation

» insufficiently documented
online calculators

Measures are often not comparable

Urgent need for software that
Implements the most important measures
allows for diagnosing disagreement

iIntegrates with existing projects
and annotation workbenches
(e.g., WebAnno, CSniper)

CSNIPER
N N L N 29%

Incomplete,

Linknown,

VBP RB 41%

PRP

Disputed, 2%

Correct, 18%
Wrong, 10%

Fleiss' Kappa: 0,89

Coding Setup

Raters assign categories to fixed items.

(Y)

e Document
classification

8|

* POS tagging

* Dialog act

tagging
* etc.

7
\

L]

[

e etc.

» Keyphrase
identification

* Argument

tagging
* Disfluencies

Unitizing Setup

Raters segment data into codable units.

continuum

DKPro

e— (el A e

Statistics
¢ >

Define annotations manually

study.addItem(Object.. <annotations>)

Code Example:
study.addItem("A", "A",
study.addItem("B", "B",
study.addItem("B",

IIBII’ "A");
IIBII’ IIBII);
IICII’ null, "B");

study.addUnit(<offset>, <length>,
<rater>, <category>)

Code Example:
study.adduUnit(1e, 4, 2, "A");
study.addunit(20, 1, 1, "B"
study.addunit(20, 3, 2, "B"

DKPro Agreement

or load from flat files/DB

Code Example:

CodingAnnotationStudy(3);
BufferedReader reader =
new BufferedReader(

String line;

I= null) {
study.addItemAsArray(
line.split("\t"));
}

reader.close();

CodingAnnotationStudy study = new

new FileReader("flatfile.tsv"));

while ((line = reader.readlLine())

http://code.google.com/p/dkpro-statistics/
v

Step 1: Represent the Annotated Data

or use UIMA annotations

Code Example:
UnitizingAnnotationStudy study =
new UnitizingAnnotationStudy(2,
jcas.getDocumentText().length());
for (Annotation a : JCasUtil.select(
jcas, Annotation.class)) {
study.addUnit(a.getBegin(),
a.getEnd() - a.getBegin(),
a.getRaterIdx(), true);

or reuse your own data model by implementing available interfaces.

. el

Step 2: Measure the Inter-Rater Agreement

Available coefficients: Code example:
Measure Type Raters Chance-corr. Weighted PercentageAgreement pa =
) new PercentageAgreement(study);
Percentage agreement p coding > 2 B B System.out.println(pa.calculateAgreement());
Bennett et al.’s S (1954) coding 2 uniform — FleissKappaAgreement kappa =
Scott’'s 7 (1955) coding 2 study-specific —~ new FleissKappaAgreement(study);
Cohen’s x (1960) coding 2 rater-specific _ System.out.println(kappa.calculateAgreement());
Randolph’s x (2005) [multi-S] coding >2 uniform - KrippendorffAlphaAgreement alpha =
. : : . new KrippendorffAlphaAgreement(study,

Fleiss's x (1971) [multi-r] coding >2 study-specific — new NominalDistanceFunction());
Hubert's x (1977) [multi-«] coding >2 rater-specific - System.out.println(
Krippendorff’s a (1980) coding >2 study-specific v alpha.calculateObservedDisagreement());

, : : - % System.out.println(
Cohen’s weighted «,, (1968) coding >2 rater-specific alpha.calculateExpectedDisagreement());
Krippendorff's o (1995) unitizing >2 study-specific — System.out.println(alpha.calculateAgreement());

Step 3: Analyze the Disagreement

Raw agreement scores are of limited help for diagnosing the main sources of disagreement.
DKPro Agreement provides multiple diagnostic devices:

Agreement insights 15 :em; 56y Formatted output and visual aids
* Observed agreement . A AIB AR * Coincidence matrix
* Expected agreement © Al B A C * Contingency matrix
* Rater-specific agreement SIAI2]1 2 |1 6 * Reliability matrix
o
 Category-specific agreement | @ B 1] 1]3 * Continuum of a unitizing study
r S| C 111 : :
* Item-specific agreement * Planned: Hinton diagrams
p=050 | «x=0.08 | =0.18
a(A)=0.39 | a(B)=-0.22 | a(C)=0.00

This work has been supported by the Volkswagen Foundation as part of the Lichtenberg-Professorship Program under grant No. 1/82806.

http://www.ukp.tu-darmstadt.de

