
• Reliability is a necessary precondition of
high quality datasets

• Long tradition of assessing inter-rater
agreement in psychology, medicine,
content analysis

• In NLP/CL often ignored or limited

• Researchers rely on

‣ manual calculations

‣ hasty implementation

‣ insufficiently documented

online calculators

• Measures are often not comparable

• Urgent need for software that

‣ implements the most important measures

‣ allows for diagnosing disagreement

‣ integrates with existing projects

and annotation workbenches

(e.g., WebAnno, CSniper)

DKPro Agreement is an open-licensed Java
library for computing inter-rater agreement
using a shared interface and data model.

Highlights:

• Support for all commonly used
inter-rater agreement measures

• Calculation of multiple coefficients
using the same data model

• Both coding and unitizing setups
are possible

• Multiple diagnostic devices and
visual aids for analyzing disagreement

• Thoroughly tested on a wide range of
examples from the literature

‣ over 60 test cases for annotation studies

including citation of original source

• Available as open source software under
the Apache License 2.0 (ASL)

‣ Extensions and comments welcome!

• Integrates well with existing
Java-based NLP frameworks

• Ready-to-use via Maven Central – simply
specify the dependency:

‣ groupId: de.tudarmstadt.ukp.dkpro.statistics

‣ artifactId: dkpro-statistics-agreement

‣ version: 2.0.0

• Part of DKPro Statistics collection

Christian M. Meyer, Margot Mieskes, Christian Stab, and Iryna Gurevych

Ubiquitous Knowledge Processing (UKP) Lab, Technische Universität Darmstadt / German Institute for Educational Research

This work has been supported by the Volkswagen Foundation as part of the Lichtenberg-Professorship Program under grant No. I/82806.

DKPro Agreement
An Open-Source Java Library for
Measuring Inter-Rater Agreement

Summary
Raters assign categories to fixed items.

• Document
classification

• POS tagging

• Dialog act
tagging

• etc.

Coding Setup

Define annotations manually

study.addItem(Object… <annotations>)

Code Example:
study.addItem("A", "A", "B", "A");
study.addItem("B", "B", "B", "B");
study.addItem("B", "C", null, "B");

study.addUnit(<offset>, <length>,

<rater>, <category>)

Code Example:
study.addUnit(10, 4, 2, "A");
study.addUnit(20, 1, 1, "B");
study.addUnit(20, 3, 2, "B");

or load from flat files/DB

Code Example:
CodingAnnotationStudy study = new

CodingAnnotationStudy(3);
BufferedReader reader =

new BufferedReader(
new FileReader("flatfile.tsv"));

String line;
while ((line = reader.readLine())

!= null) {
 study.addItemAsArray(

line.split("\t"));
}
reader.close();

or use UIMA annotations

Code Example:
UnitizingAnnotationStudy study =

new UnitizingAnnotationStudy(2,
jcas.getDocumentText().length());

for (Annotation a : JCasUtil.select(
jcas, Annotation.class)) {

 study.addUnit(a.getBegin(),
 a.getEnd() - a.getBegin(),
 a.getRaterIdx(), true);

}

Step 1: Represent the Annotated Data

Raters segment data into codable units.

• Keyphrase
identification

• Argument
tagging

• Disfluencies

• etc.

Unitizing Setup

DKPro Agreement
http://code.google.com/p/dkpro-statistics/

Available coefficients: Code example:

PercentageAgreement pa =
new PercentageAgreement(study);

System.out.println(pa.calculateAgreement());

FleissKappaAgreement kappa =
new FleissKappaAgreement(study);

System.out.println(kappa.calculateAgreement());

KrippendorffAlphaAgreement alpha =
new KrippendorffAlphaAgreement(study,
new NominalDistanceFunction());

System.out.println(
alpha.calculateObservedDisagreement());

System.out.println(
alpha.calculateExpectedDisagreement());

System.out.println(alpha.calculateAgreement());

Step 2: Measure the Inter-Rater Agreement

Raw agreement scores are of limited help for diagnosing the main sources of disagreement.
DKPro Agreement provides multiple diagnostic devices:

Step 3: Analyze the Disagreement

http://www.ukp.tu-darmstadt.de

Measure Type Raters Chance-corr. Weighted

Percentage agreement p coding  2 – –

Bennett et al.’s S (1954) coding 2 uniform –

Scott’s π (1955) coding 2 study-specific –

Cohen’s κ (1960) coding 2 rater-specific –

Randolph’s κ (2005) [multi-S] coding  2 uniform –

Fleiss’s κ (1971) [multi-π] coding  2 study-specific –

Hubert’s κ (1977) [multi-κ] coding  2 rater-specific –

Krippendorff’s α (1980) coding  2 study-specific 

Cohen’s weighted κw (1968) coding  2 rater-specific 

Krippendorff’s αU (1995) unitizing  2 study-specific –

Motivation

it
e

m
 6

it
e

m
 1

it
e

m
 2

it
e

m
 3

it
e

m
 4

it
e

m
 5

A A B A A B

A B A C …

…

A

B

A A

A A A

…

…

continuum

B

B B

“gap”

CSNIPER

or reuse your own data model by implementing available interfaces.

Agreement insights

• Observed agreement

• Expected agreement

• Rater-specific agreement

• Category-specific agreement

• Item-specific agreement

Formatted output and visual aids

• Coincidence matrix

• Contingency matrix

• Reliability matrix

• Continuum of a unitizing study

• Planned: Hinton diagrams

items

1 2 3 4 5 6 ∑

ra
te

rs

A A B A A B

A B A C

ca
te

g
o

ri
e

s

A 2 1 2 1 6

B 1 1 1 3

C 1 1

p = 0.50 | κ = 0.08 | α = 0.18
α(A) = 0.39 | α(B) = –0.22 | α(C) = 0.00

