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1 Motivation

How to automatically generate exercises of different target
difficulty from a single text?

Static approach Proposed approach

É Language learning requires a lot of effort and motivation
É Personalized exercises can help keeping learners motivated
É For example, using their favorite book as a basis for exercises

2 Overall Architecture

1. Create standard C-Test
2. Assess difficulty
3. Manipulate C-Test
4. Go to 2. if not

a) Reached target difficulty τ
b) No manipulation possible

5. Return resulting C-Test τ

3 C-Test Difficulty Prediction

É Reproduction study of the work done
by Lisa Beinborn (2016)

É Seemingly small changes may lead to
different results (e.g., using a newer
system dictionary)

É Achieved similar performance as the
original system

Original data New data
Model ρ RMSE qwκ ρ RMSE qwκ

SVM (original) .50 .23 .44 – – –
SVM (reproduced) .49 .24 .47 .50 .21 .39
MLP .42 .25 .31 .41 .22 .25
BiLSTM .49 .24 .35 .39 .24 .27

4 C-Test Difficulty Manipulation

Algorithm 1 Gap size strategy (SIZE)
1: procedure INCREASEDIFFICULTY(T , τ)
2: GSIZE← GDEF
3: D← d(T )
4: while D < τ do
5: g∗ = (i,`)← arg max

g∈GSIZE

∆inc(g)

6: `← `+ 1
7: D← D+∆inc(g)
8: return GSIZE

É SIZE: Modifying the gap size
• Keep the initial gaps GDEF

• Only change the gap size `
• Increase (decrease) gap size for higher

(lower) C-Test difficulty ∆inc (∆dec)

É SEL: Changing the gap selection
• Create all possible gaps GFULL

• Select gaps closest to target difficulty

Algorithm 2 Gap selection strategy (SEL)
1: procedure GAPSELECTION(T , τ)
2: GFULL← {(i, d

|wi|
2 e | 1≤ i ≤ 2n}

3: GSEL← ;
4: while |GSEL|< n do
5: G≤τ← {g ∈ GFULL | d(g)≤ τ}
6: if |G≤τ|> 0 then
7: g∗← arg min

g∈G≤τ
|d(g)−τ|

8: GSEL← GSEL ∪ {g∗}
9: GFULL← GFULL \ {g∗}

10: G>τ← {g ∈ GFULL | d(g)> τ}
11: if |G>τ|> 0 then
12: g∗← argmin

g∈G>τ
|d(g)−τ|

13: GSEL← GSEL ∪ {g∗}
14: GFULL← GFULL \ {g∗}
15: return GSEL

What are C-Tests?

C-Tests are fill-the-gap exercises where the
second half of a word is turned into a gap
for every second word in a text. To provide
some contextual information, the first and
the last sentence of a text do not contain
any gaps. Due to the first half remaining as
a hint, C-Tests have less ambiguity but still
require orthographic, morphologic, syntactic,
and semantic competencies.

St. Louis si__ in t__ center o_ a relatively
slow-growing a__ in so__ places stag____
mid-continent region . Slac_____ regional
dem___ for St. Lo___ goods a__ services
refl____ the reg___’s relative la__ of
purch_____ power. N__ all St. Lo___
industries, o_ course, ha__ a market ar__
confined t_ the immediate neighborhood.

5 Evaluation of Achievable Target Difficulty

É Automatic evaluation on the Gutenberg, Reuters, and Brown corpus

É Assess influence of the underlying text for a target difficulty τ

É Create maximally (τmax = 1.0) and minimally (τmin = 0.0) difficult
C-Tests and estimate their difficulty using SEL and SIZE

É Most texts produce C-Tests with τ ∈ [0.0,0.4]

É Error-rate ranges τmax−τmin for different corpora  0
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6 User Study for C-Tests of Different Target Difficulties

τ0.1 τ0.5

É Sample four texts {T1, T2, T3, T4} of medium difficulty from the Brown corpus

É Use T1 as the reference C-Test (same for all participants)

É For {T2, T3, T4}, create an easy (τ= 0.1), hard (τ= 0.5), and default version with SEL and SIZE.

É Two groups of 30 participants each solve either SEL or SIZE modified C-Tests.

É Each participant solves four C-Tests and provides feedback on a five-point Likert-scale, their
error-rate, and by ranking all C-Tests according to their perceived difficulty.
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7 Conclusion
É Both manipulation strategies were able to create C-Tests of a tar-

get difficulty τ and were also perceived accordingly
É This allows us to create language learning exercises from a

learner-preferred basis of texts to keep them motivated
É Work towards personalized learning process for different learners

Code and Data

https://github.com/UKPLab/acl2019-ctest-difficulty-manipulation
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