
Manipulating
the Difficulty of C-Tests

Ji-Ung Lee, Erik Schwan, Christian M. Meyer
Ubiquitous Knowledge Processing Lab (UKP)
Department of Computer Science, Technische Universität Darmstadt
https://www.ukp.tu-darmstadt.de

1 Motivation

How to automatically generate exercises of different target
difficulty from a single text?

Static approach Proposed approach

É Language learning requires a lot of effort and motivation
É Personalized exercises can help keeping learners motivated
É For example, using their favorite book as a basis for exercises

2 Overall Architecture

1. Create standard C-Test
2. Assess difficulty
3. Manipulate C-Test
4. Go to 2. if not

a) Reached target difficulty τ
b) No manipulation possible

5. Return resulting C-Test τ

3 C-Test Difficulty Prediction

É Reproduction study of the work done
by Lisa Beinborn (2016)

É Seemingly small changes may lead to
different results (e.g., using a newer
system dictionary)

É Achieved similar performance as the
original system

Original data New data
Model ρ RMSE qwκ ρ RMSE qwκ

SVM (original) .50 .23 .44 – – –
SVM (reproduced) .49 .24 .47 .50 .21 .39
MLP .42 .25 .31 .41 .22 .25
BiLSTM .49 .24 .35 .39 .24 .27

4 C-Test Difficulty Manipulation

Algorithm 1 Gap size strategy (SIZE)
1: procedure INCREASEDIFFICULTY(T , τ)
2: GSIZE← GDEF
3: D← d(T)
4: while D < τ do
5: g∗ = (i,`)← arg max

g∈GSIZE

∆inc(g)

6: `← `+ 1
7: D← D+∆inc(g)
8: return GSIZE

É SIZE: Modifying the gap size
• Keep the initial gaps GDEF

• Only change the gap size `
• Increase (decrease) gap size for higher

(lower) C-Test difficulty ∆inc (∆dec)

É SEL: Changing the gap selection
• Create all possible gaps GFULL

• Select gaps closest to target difficulty

Algorithm 2 Gap selection strategy (SEL)
1: procedure GAPSELECTION(T , τ)
2: GFULL← {(i, d

|wi|
2 e | 1≤ i ≤ 2n}

3: GSEL← ;
4: while |GSEL|< n do
5: G≤τ← {g ∈ GFULL | d(g)≤ τ}
6: if |G≤τ|> 0 then
7: g∗← arg min

g∈G≤τ
|d(g)−τ|

8: GSEL← GSEL ∪ {g∗}
9: GFULL← GFULL \ {g∗}

10: G>τ← {g ∈ GFULL | d(g)> τ}
11: if |G>τ|> 0 then
12: g∗← argmin

g∈G>τ
|d(g)−τ|

13: GSEL← GSEL ∪ {g∗}
14: GFULL← GFULL \ {g∗}
15: return GSEL

What are C-Tests?

C-Tests are fill-the-gap exercises where the
second half of a word is turned into a gap
for every second word in a text. To provide
some contextual information, the first and
the last sentence of a text do not contain
any gaps. Due to the first half remaining as
a hint, C-Tests have less ambiguity but still
require orthographic, morphologic, syntactic,
and semantic competencies.

St. Louis si__ in t__ center o_ a relatively
slow-growing a__ in so__ places stag____
mid-continent region . Slac_____ regional
dem___ for St. Lo___ goods a__ services
refl____ the reg___’s relative la__ of
purch_____ power. N__ all St. Lo___
industries, o_ course, ha__ a market ar__
confined t_ the immediate neighborhood.

5 Evaluation of Achievable Target Difficulty

É Automatic evaluation on the Gutenberg, Reuters, and Brown corpus

É Assess influence of the underlying text for a target difficulty τ

É Create maximally (τmax = 1.0) and minimally (τmin = 0.0) difficult
C-Tests and estimate their difficulty using SEL and SIZE

É Most texts produce C-Tests with τ ∈ [0.0,0.4]

É Error-rate ranges τmax−τmin for different corpora 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f

E
xe

rc
is

e
s

Exercise Difficulty

SIZEGutenberg
SIZEReuters
SIZEBrown
SELGutenberg
SELReuters
SELBrown

6 User Study for C-Tests of Different Target Difficulties

τ0.1 τ0.5

É Sample four texts {T1, T2, T3, T4} of medium difficulty from the Brown corpus

É Use T1 as the reference C-Test (same for all participants)

É For {T2, T3, T4}, create an easy (τ= 0.1), hard (τ= 0.5), and default version with SEL and SIZE.

É Two groups of 30 participants each solve either SEL or SIZE modified C-Tests.

É Each participant solves four C-Tests and provides feedback on a five-point Likert-scale, their
error-rate, and by ranking all C-Tests according to their perceived difficulty.

SIZE,dec SEL,dec DEF SIZE,inc SEL,inc
0.0

0.2

0.4

0.6

0.8

Er
ro

r r
at

e

a) Error-rate
SIZE,dec SEL,dec DEF SIZE,inc SEL,inc

too easy

easy

OK

hard

too hard

Lik
er

t F
ee

db
ac

k

b) Likert-scale
SIZE,dec SEL,dec DEF SIZE,inc SEL,inc

1

2

3

4

Di
ffi

cu
lty

 R
an

ki
ng

c) Ranking

7 Conclusion
É Both manipulation strategies were able to create C-Tests of a tar-

get difficulty τ and were also perceived accordingly
É This allows us to create language learning exercises from a

learner-preferred basis of texts to keep them motivated
É Work towards personalized learning process for different learners

Code and Data

https://github.com/UKPLab/acl2019-ctest-difficulty-manipulation

We thank Lisa Beinborn and the language center of Technische Universität Darmstadt for providing us with the necessary data to
reproduce their experiments. We also thank Claudia Schulz, Tristan Miller, Chris Stahlhut and the anonymous reviewers for their
detailed and helpful comments to improve this work. This work was supported by the Hessian research excellence program LOEWE
as part of the a! - automated language instruction project under grant No.521/17-03 and by the German Research Foundation as
part of the Research Training Group AIPHES under grant no. GRK 1994/1.

https://www.ukp.tu-darmstadt.de
https://github.com/UKPLab/acl2019-ctest-difficulty-manipulation

