Lösen von Differentialgleichungen

Analysis II für Informatiker und Wirtschaftsinformatiker

Simon Fuhrmann

27. April 2005

Übersicht

In der Vorlesung Analysis II SS 04 wurden Lösungsverfahren für die folgenden Arten von Differentialgleichungen (abgekürzt auch DGL) behandelt:

$\dot{c}(t) = \xi(c(t))$	Allgemeine Definition einer gewöhnlichen DGL
$\dot{c}(t) = g(c(t)) \cdot f(t)$	DGL mit getrennten Variablen
$\dot{c}(t) = A(t) \cdot c(t)$	homogene lineare DGL
$\dot{c}(t) = A(t) \cdot c(t) + b(t)$	inhomogene lineare DGL

DGLs, die nicht in eine der letzten drei Kategorien fallen, können wir algebraisch so nicht lösen. Es kann allerdings das Picard-Iterationsverfahren zur numerischen Berechnung verwendet werden.

Dabei müssen folgende Funktionsdefinitionen beachtet werden:

$\xi \colon \ U \longrightarrow V$	Vektorfeld (mit $U \subseteq V$ offen)
$g: V \longrightarrow V$	ohne zeitabhängige Einflüsse
$f \colon J \longrightarrow V$	nicht notwendigerweise linear
$b: J \longrightarrow V$	nicht notwendigerweise linear
$A: J \longrightarrow L(V, V)$	linear und stetig

Jede homogene lineare DGL kann auch als DGL mit getrennten Variablen dargestellt werden, umgekehrt gilt dies nicht. Auch manche inhomogene lineare DGL können als DGL mit getrennten Variablen dargestellt werden.

Beispiele

$$\dot{c}(t) = 4t^2 \cdot c(t)$$
 Das ist eine DGL mit getrennten Variablen. Setze $g(c(t)) = c(t), \ f(t) = 4t^2.$ Das ist eine homogene lineare DGL. Setze $A(t) = 2t$ Das ist eine inhomogene lineare DGL. Setze $A(t) = 2t$ Das ist eine inhomogene lineare DGL. Setze $A(t) = 2t, \ b(t) = -t.$

Letzteres kann auch als DGL mit getrennten Variablen berechnet werden:

$$\dot{c}(t) = 2t \cdot c(t) - t = t \cdot (2c(t) - 1)$$
 setze: $g(c(t)) = 2c(t) - 1$, $f(t) = t$

DGL mit getrennten Variablen

$$\dot{c}(t) = g(c(t)) \cdot f(t)$$
 Startwert: $c(t_0) = c_0$

- Berechne: $H(v) = \int_{c_0}^{v} \frac{1}{g(x)} dx$
- Berechne: c(t) aus F(t) = H(c(t)), ersetze also v in H(v) durch c(t)
- Probe: Leite c(t) ab, vergleiche mit $\dot{c}(t)$

Homogene lineare DGL

$$\dot{c}(t) = A(t) \cdot c(t)$$
 Startwert: $c(t_0) = c_0$

• Berechne: $c(t) = \exp\left(\int_{t_0}^t A(s) \, ds\right) \cdot c_0$

Inhomogene lineare DGL

$$\dot{c}(t) = A(t) \cdot c(t) + b(t)$$
 Startwert: $c(t_0) = c_0$

Schritt 1: Vollständiges Lösen des homogenen Systems

• Berechne: $\Phi_t(c_0) = \exp\left(\int_{t_0}^t A(s) \, ds\right) \cdot c_0$

Schritt 2: Finden einer Lösung des inhomogenen Systems

- \bullet Berechne: Φ_s^{-1} durch Invertieren von Φ_t und ersetzen von tdurch s
- Berechne: $u(t) = \int_{t_0}^t \Phi_s^{-1} (b(s)) ds$
- Berechne: $\tilde{c}(t) = \Phi_t(u(t))$

Schritt 3: Vollständiges Lösen des inhomogenen Systems

• Berechne: $c(t) = \Phi_t(c_0) + \tilde{c}(t)$

Das Picard-Iterationsverfahren

$$\dot{c}(t) = \xi(c(t))$$
 Startwert: $c(0) = v$

- \bullet Definiere Startwert der Folge: $c_0(t)=v$
- Berechne Folgenglieder: $c_{n+1}(t) = S_v(c_n(t)) = v + \int_0^t \xi(c_n(s)) ds$
- Die Folge $(c_n)_{n\in\mathbb{N}}$ konvergiert gegen die Lösung der DGL: $\lim_{n\to\infty}c_n(t)=c(t)$